4,501 research outputs found

    On the relevance of q-distribution functions: The return time distribution of restricted random walker

    Get PDF
    There exist a large literature on the application of qq-statistics to the out-of-equilibrium non-ergodic systems in which some degree of strong correlations exists. Here we study the distribution of first return times to zero, PR(0,t)P_R(0,t), of a random walk on the set of integers {0,1,2,...,L}\{0,1,2,...,L\} with a position dependent transition probability given by n/La|n/L|^a. We find that for all values of a[0,2]a\in[0,2] PR(0,t)P_R(0,t) can be fitted by qq-exponentials, but only for a=1a=1 is PR(0,t)P_R(0,t) given exactly by a qq-exponential in the limit LL\rightarrow\infty. This is a remarkable result since the exact analytical solution of the corresponding continuum model represents PR(0,t)P_R(0,t) as a sum of Bessel functions with a smooth dependence on aa from which we are unable to identify a=1a=1 as of special significance. However, from the high precision numerical iteration of the discrete Master Equation, we do verify that only for a=1a=1 is PR(0,t)P_R(0,t) exactly a qq-exponential and that a tiny departure from this parameter value makes the distribution deviate from qq-exponential. Further research is certainly required to identify the reason for this result and also the applicability of qq-statistics and its domain.Comment: 14 pages, 3 figures. The replacement correct that two papers in the reference list were not mentioned in the tex

    Svefn hjá vaktavinnufólki

    Get PDF
    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkin

    Bibliographic search with Mark-and-Recapture

    Get PDF

    Neuronal avalanches recorded in the awake and sleeping monkey do not show a power law but can be reproduced by a self-organized critical model

    Get PDF
    Poster presentation: Self-organized critical (SOC) systems are complex dynamical systems that may express cascades of events, called avalanches [1]. The SOC state was proposed to govern brain function, because of its activity fluctuations over many orders of magnitude, its sensitivity to small input and its long term stability [2,3]. In addition, the critical state is optimal for information storage and processing [4]. Both hallmark features of SOC systems, a power law distribution f(s) for the avalanche size s and a branching parameter (bp) of unity, were found for neuronal avalanches recorded in vitro [5]. However, recordings in vivo yielded contradictory results [6]. Electrophysiological recordings in vivo only cover a small fraction of the brain, while criticality analysis assumes that the complete system is sampled. We hypothesized that spatial subsampling might influence the observed avalanche statistics. In addition, SOC models can have different connectivity, but always show a power law for f(s) and bp = 1 when fully sampled. This may not be the case under subsampling, however. Here, we wanted to know whether a state change from awake to asleep could be modeled by changing the connectivity of a SOC model without leaving the critical state. We simulated a SOC model [1] and calculated f(s) and bp obtained from sampling only the activity of a set of 4 × 4 sites, representing the electrode positions in the cortex. We compared these results with results obtained from multielectrode recordings of local field potentials (LFP) in the cortex of behaving monkeys. We calculated f(s) and bp for the LFP activity recorded while the monkey was either awake or asleep and compared these results to results obtained from two subsampled SOC model with different connectivity. f(s) and bp were very similar for both the experiments and the subsampled SOC model, but in contrast to the fully sampled model, f(s) did not show a power law and bp was smaller than unity. With increasing the distance between the sampling sites, f(s) changed from "apparently supercritical" to "apparently subcritical" distributions in both the model and the LFP data. f(s) and bp calculated from LFP recorded during awake and asleep differed. These changes could be explained by altering the connectivity in the SOC model. Our results show that subsampling can prevent the observation of the characteristic power law and bp in SOC systems, and misclassifications of critical systems as sub- or supercritical are possible. In addition, a change in f(s) and bp for different states (awake/asleep) does not necessarily imply a change from criticality to sub- or supercriticality, but can also be explained by a change in the effective connectivity of the network without leaving the critical state

    Synchronization by small time delays

    Get PDF
    AbstractSynchronization is a phenomenon observed in all of the living and in much of the non-living world, for example in the heart beat, Huygens’ clocks, the flashing of fireflies and the clapping of audiences. Depending on the number of degrees of freedom involved, different mathematical approaches have been used to describe it, most prominently integrate-and-fire oscillators and the Kuramoto model of coupled oscillators. In the present work, we study a very simple and general system of smoothly evolving oscillators, which continue to interact even in the synchronized state. We find that under very general circumstances, synchronization generically occurs in the presence of a (small) time delay. Strikingly, the synchronization time is inversely proportional to the time delay

    Precise calculation of a bond percolation transition and survival rates of nodes in a complex network

    Get PDF
    <p><b>(a) Cumulative distributions of the survival rate at the critical point (<i>f</i><sub>c</sub> = 0.994) of nodes belonging to the largest shell, <i>k</i><sub><i>s</i></sub> = 25, in the initial state. (b) Schematic figure of calculating the survival rate</b>. Each link is supposed to be removed with the same probability and we compare the sizes of separated clusters. The gray nodes belong to the largest cluster. <b>(c) Cumulative distribution of link numbers at the critical point in a log-log plot</b>. The solid line is calculated only in the largest cluster, and a superposition of 100 trials. The dotted line is calculated for all clusters, and we take superposition of 10 trials. The guide line shows the slope of 1.5, the same slope as <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0119979#pone.0119979.g001" target="_blank">Fig 1(a)</a>.</p

    Statistical mechanics of exploding phase spaces: ontic open systems

    Get PDF
    The volume of phase space may grow super-exponentially ('explosively') with the number of degrees of freedom for certain types of complex systems such as those encountered in biology and neuroscience, where components interact and create new emergent states. Standard ensemble theory can break down as we demonstrate in a simple model reminiscent of complex systems where new collective states emerge. We present an axiomatically defined entropy and argue that it is extensive in the micro-canonical, equal probability, and canonical (max-entropy) ensemble for super-exponentially growing phase spaces. This entropy may be useful in determining probability measures in analogy with how statistical mechanics establishes statistical ensembles by maximising entropy

    Erratum to: 25 Years of Self-organized Criticality: Concepts and Controversies

    Get PDF
    Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers
    corecore